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Abstract
Dyson’s integration theorem is widely used in the computation of eigenvalue
correlation functions in random matrix theory. Here, we focus on the variant
of the theorem for determinants, relevant for the unitary ensembles with Dyson
index β = 2. We derive a formula reducing the (n−k)-fold integral of an n×n

determinant of a kernel of two sets of arbitrary functions to a determinant of size
k × k. Our generalization allows for sets of functions that are not orthogonal
or bi-orthogonal with respect to the integration measure. In the special case of
orthogonal functions Dyson’s theorem is recovered.

PACS number: 02.10.Yn

1. Motivation

Random matrix theory (RMT) has many applications in all areas of physics and beyond (see,
e.g., the introduction of [1]). For the class of invariant RMT Dyson’s integration theorem is at
the heart of the method of orthogonal polynomials when computing all eigenvalue correlation
functions exactly, for finite n × n matrices. The resulting expressions are then amenable to
the large-n limit, in which universal RMT predictions follow. In the following, we restrict
ourselves to the integration theorem for determinants. Before presenting our generalization
thereof we briefly recall how it reveals all eigenvalue correlations in the unitary ensembles.

We start by stating Dyson’s integration theorem, as cited in [1] (theorem 5.1.4). Given
K(x, y) is a real-valued function satisfying the following self-contraction property:∫

dy K(x, y)K(y, z) = K(x, z),∫
dy K(y, y) = c.

(1.1)

Then it holds1 ∫
dx1 det

1�i,j�n
[K(xi, xj )] = (c − n + 1) det

2�i,j�n
[K(xi, xj )], (1.2)

1 The symmetry property K(x, y) = K(y, x) stated in [1] is not necessary, as can be seen from the proof there.
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thus reducing the size of the determinant by one through the integration. The theorem
also holds for kernels of orthogonal polynomials in the complex plane or for bi-orthogonal
polynomials. A similar statement is true for quaternion-valued kernels with the determinant
replaced by a quaternion determinant (or Pfaffian). We refer to [1] for details as we will only
consider the ordinary determinant case here. Iterating the integration theorem the following
holds for an (n − k)-fold integral:∫ n−k∏

l=1

dxl det
1�i,j�n

[K(xi, xj )] = (c − n + 1) · · · (c − k) det
n−k+1�i,j�n

[K(xi, xj )]. (1.3)

It is this form that we will generalize as it is most useful when computing correlation functions
in RMT. We emphasize that on the right-hand side (rhs) the determinant has reduced to size
k × k over the same kernel.

The application of equation (1.3) to the unitary ensembles goes as follows. Suppose we
have a set of orthogonal polynomials pk(x) = xk +O(xk−1) of order k in monic normalization
satisfying ∫

dx w(x)pk(x)pj (x) = hkδkj . (1.4)

Here, w(x) is a positive weight function such that all moments exist. From the polynomials
we can construct orthonormal wavefunctions

ϕk(x) ≡ h
−1/2
k w(x)1/2pk(x) (1.5)

and the following kernel:

Kn(x, y) ≡
n−1∑
j=0

ϕj (x)ϕj (y). (1.6)

It satisfies Dyson’s theorem above with c = n. In the symmetry class of unitary invariant
RMT, the partition function is given in terms of the joint probability distribution (jpdf) of
eigenvalues as

Zn =
∫ n∏

i=1

dxi w(xi)�n(x)2. (1.7)

The Vandermonde determinant in the integrand,

�n(x) = det
1�i,j�n

[
x

j−1
i

] = det
1�i,j�n

[pj−1(xi)], (1.8)

can be replaced by a determinant over an arbitrary set of monic polynomials. If we choose the
orthogonal ones we can rewrite the jpdf and thus the partition function after few manipulations
as

Zn =
∫ n∏

i=1

dxi hi−1 det
1�j,k�n

[Kn(xj , xk)]. (1.9)

It immediately follows from Dyson’s theorem that Zn = n!
∏n

i=1 hi−1. Moreover, following
equation (1.9) all k-point eigenvalue correlation functions given by n− k integrations over the
jpdf can be immediately read off:

Rk(x1, . . . , xk) ≡ 1

(n − k)!

∫ n∏
i=k+1

dxi det
1�i,j�n

[Kn(xi, xj )] = det
1�i,j�k

[Kn(xi, xj )]. (1.10)

In the large-n limit the size of the determinant on the rhs remains fixed, and the kernel can be
easily evaluated using the Christoffel–Darboux identity for orthogonal polynomials on R.
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Since in this example the choice of orthogonal polynomials was entirely at our disposal,
why should we choose polynomials that are not orthogonal with respect to the weight function
or the integration range? The reason is that we are not always able to choose the polynomials
to be orthogonal. One example where such a situation occurs is in the Schwinger model [2].
A second example, being in a different symmetry class, appears when considering the Ginibre
ensemble with real non-symmetric matrices [3]. Integrating out all real eigenvalues one arrives
at the Pfaffian of the so-called D-kernel of the Gaussian orthogonal ensemble [1], integrated
over a non-Gaussian weight function in the complex plane. Consequently, the self-contracting
property equation (1.1) is not satisfied then.

For this reason, we propose a generalization of Dyson’s theorem for determinants without
imposing any orthogonality condition, and we restrict ourselves to real integrals for simplicity.
The generalization to integrals over C is straightforward. A counterpart for integrating
Pfaffians of a non-self-contracting bilinear has been proved in [3] in the special case when all
variables are integrated out.

2. Results

Let each {φj (p)} and {ψj(q)}, j = 1, . . . , n, be a set of linearly independent2, integrable
functions, such that all integrals

∫
dx φi(x)ψj (x) exist. For these two sets we define the

following bilinear function:

Qn(x, y) ≡
n∑

j=1

φj (x)ψj (y). (2.1)

Then the following holds:

Theorem 1.

1

C

∫ n−k∏
l=1

dxl det
1�i,j�n

[Qn(pi, qj )] = (n − k)! det
n−k+1�i,j�n

[Kn(pi, qj )], k = 0, . . . , n,

(2.2)

where we have set pi = qi = xi, i = 1, . . . , n − k, for all integration variables.

The kernel Kn(p, q) on the rhs is given by

Kn(p, q) ≡ 1

C

n∑
a=1

det




∫
dx φ1(x)ψ1(x) · · · φ1(p)ψa(q) · · · ∫ dx φ1(x)ψn(x)

· · · · · · · · ·∫
dx φn(x)ψ1(x) · · · φn(p)ψa(q) · · · ∫ dx φn(x)ψn(x)


 , (2.3)

where the sum runs over the ath column replacing the integrated functions by unintegrated
ones. The normalization C on the left-hand side (lhs) is given by

C ≡ det




∫
dx φ1(x)ψ1(x) · · · · · · ∫ dx φ1(x)ψn(x)

· · · · · ·∫
dx φn(x)ψ1(x) · · · · · · ∫ dx φn(x)ψn(x)


 . (2.4)

Thus, we have reduced an (n−k)-fold integral over an n×n determinant to a k×k determinant
of a single kernel, consisting of a sum of n × n determinants containing only single integrals.

The rhs of our theorem 1 can be interpreted as a generalized kernel having 2k variables.
If we define

K(k)
n (p1, . . . , pk; q1, . . . , qk) ≡ 1

k!
det

1�i,j�k
[Kn(pi, qj )], (2.5)

these satisfy the following generalized self-contraction property (see equation (1.1)):
2 We note that the functions φj (x) may or may not be linear combinations of the functions ψj (x).
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Theorem 2.∫
dq1 · · · dqkK(k)

n (p1, . . . , pk; q1, . . . , qk)K(k)
n (q1, . . . , qk; r1, . . . , rk)

= K(k)
n (p1, . . . , pk; r1, . . . , rk),∫

dq1 · · · dqkK(k)
n (q1, . . . , qk; q1, . . . , qk) =

(
n

k

)
. (2.6)

In particular the kernel defined in equation (2.3), K(k=1)
n (p; q) ≡ Kn(p; q), is self-contracting.

Let us make a few remarks. First, the bilinear Qn(x, y) of the set of functions is in
general different from the kernel on the rhs: Q(x, y) �= Kn(x, y). In particular, it is not self-
contractive in general:

∫
dy Q(x, y)Q(y, z) �= Q(x, z). In the case of orthogonal functions,∫

dx φk(x)ψj (x) = δkj , we obviously get back Qn(x, y) = Kn(x, y). Then Dyson’s theorem
applies, as in the example in the previous section.

Special cases of theorem 1 were previously known. For k = 0 it goes back to C Andréief
in 1883 as cited in [4], after multiplying with the normalization C:∫ n∏

l=1

dxl det
1�i,j�n

[φj (xi)] det
1�i,j�n

[ψj(xi)] = n! det
1�i,j�n

[∫
dx φi(x)ψj (x)

]
. (2.7)

The identity for k = 1 was stated and used in [2] but no explicit proof was given. Furthermore,
let us point out that for k = n there are no integrations, thus equating the determinant of the
bilinear function and of the kernel.

All statements above also hold when the normalization equation (2.4) accidentally
vanishes, C = 0, as will be indicated below. This cannot happen for Dyson’s integration
theorem.

3. Proofs

The proof of theorem 1 will go in three steps, taking the known result for k = 0 for granted.
In step (i) we prove the theorem for k = 1, relating to the definition (2.3). In step (ii) we
show that the kernel Kn(p, q) satisfies the self-contraction property, equation (2.6), theorem 2
for k = 1. In the last step (iii) we prove theorem 1 for k = n without integrations. Because
of the self-contraction property of Kn(p, q) we can then apply Dyson’s theorem to the rhs to
show all the remaining cases. Theorem 2 for k � 2 will then be shown in the second part.

Step (i). To prove k = 1, in a first trivial step we can replace the determinant of the bilinear
function as follows:

det
1�i,j�n

[Qn(pi, qj )] = det
1�i,j�n

[
n∑

a=1

φa(pi)ψa(qj )

]
= det

1�a,i�n
[φa(pi)] det

1�a,j�n
[ψa(qj )]. (3.1)

Inserting this into the lhs we can expand both determinants with respect to the last, unintegrated
column:

1

C

∫ n−1∏
l=1

dxl det
1�a,i�n

[φa(pi)] det
1�a,j�n

[ψa(qj )]

= 1

C

∫ n−1∏
m=1

dxm


 n∑

j=1

φj (pn)C
φ

j


 (

n∑
l=1

ψl(qn)C
ψ

l

)
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= (n − 1)!

C

n∑
l,j=1

φj (pn)ψl(qn)Clj

= (n − 1)!Kn(pn, qn), (3.2)

where pi = qi = xi for i = 1, . . . , n − 1. We have introduced the minors

C
φ

j ≡ (−)n−1+j det
i �=j

[φi(xk)] and C
ψ

l ≡ (−)n−1+l det
i �=l

[ψi(xk)]. (3.3)

These contain n − 1 functions each, and all variables x1, . . . , xn−1 are integrated. Thus, for
each product C

φ

j C
ψ

l we can apply the formula for k = 0 by C Andréief equation (2.7), with
the resulting minor

Clj ≡ (−)l+j det
i �=j ;k �=l

[∫
dx φi(x)ψk(x)

]
. (3.4)

In the last step, the sum in equation (3.2) can be precisely written as the sum over determinants
in equation (2.3), each expanded with respect to the ath column.

Step (ii). To derive the self-contraction property for Kn(p, q) we simply insert the
definition (2.3), applying the shorthand notation 〈i, k〉 ≡ ∫

dx φi(x)ψk(x):

∫
dq Kn(p, q)Kn(q, r) = 1

C2

∫
dq


 n∑

a=1

det


〈1, 1〉 · · · φ1(p)ψa(q) · · · 〈1, n〉

· · · · · · · · ·
〈n, 1〉 · · · φn(p)ψa(q) · · · 〈n, n〉







×

 n∑

b=1

det


〈1, 1〉 · · · φ1(q)ψb(r) · · · 〈1, n〉

· · · · · · · · ·
〈n, 1〉 · · · φn(q)ψb(r) · · · 〈n, n〉







= 1

C2


 n∑

a=1

det


〈1, 1〉 · · · φ1(p)ψb=a(r) · · · 〈1, n〉

· · · · · · · · ·
〈n, 1〉 · · · φn(p)ψb=a(r) · · · 〈n, n〉





 × C

= Kn(p, r). (3.5)

Here, we simply observe that in each product of determinants the common factors ψa(q) and
ψb(r) can be taken out of the columns a and b, respectively, and can then be multiplied into the
columns of the other determinant. In a second step, the integral

∫
dq can now be taken inside

the bth column of the second determinant containing φj (q)ψa(q), resulting into 〈j, a〉. This
leads to a column already present and thus a vanishing determinant, unless we have a = b.
The resulting normalization cancels one power of C to reproduce the kernel.

Step (iii). We prove theorem 1 for k = n when all integrations are absent. It is easily seen
when expanding the kernel inside the determinant on the rhs, using the formula in the last line
of equation (3.2):

det
1�i,j�n

[K(pi, qj )] = det
1�i,j�n

[
1

C

n∑
l,k=1

φk(pi)ψl(qj )Clk

]

= det
1�i,k�n

[φk(pi)] det
1�l,j�n

[ψl(pj )] det
1�l,k�n

[
1

C
Clk

]

= 1

C
det

1�i,j�n
[Qn(pi, qj )]. (3.6)

In the first step, we used that the determinant of the matrix product is the product of the
determinants. Furthermore, the minors are just the matrix elements of the inverse matrix,
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Clk/C = (C−1)lk , and we used equation (3.1). Because of (ii) we can now apply Dyson’s
integration theorem to the determinant of the self-contracting kernel Kn(pi, qj ). Using its
normalization,

∫
dq Kn(q, q) = n which can be trivially seen, we arrive at theorem 1 for all

k = 0, . . . , n.
Finally, we deal with the case C = 0. The Andréief formula, equation (2.7), still holds and

vanishes identically. To make theorem 1 nonsingular we multiply it with Ck . Step (i) proving
k = 1 remains true and in general nonzero, using equation (2.7) for size n − 1. For k � 2
the lhs of theorem 1 times Ck is zero. If the matrix under the determinant C, equation (2.4)
has rank n − 2 or less, all determinants inside the kernel, equation (2.3), vanish and make the
rhs identically zero. For rank n − 1 it is easy to see that the kernel, equation (2.3), factorizes
into two functions of p and q, thus having a vanishing determinant on the rhs.

It remains to prove theorem 2 for k � 2. The proof goes as follows. On the rhs of (2.6),
we substitute each of the two kernels K(k)

n as a determinant of single kernels from their
definition (2.5). Using the standard representation of a determinant, we get

lhs = 1

(k!)2

∫
dq1 · · · dqk

∑
σ,σ ′

(−1)σ+σ ′
k∏

i=1

[Kn(pσ(i), qi)Kn(qi, rσ ′(i))]. (3.7)

The fact that Kn(x, y) is self-contractive allows us to do all the integrals over qi , to obtain

lhs = 1

(k!)2

∑
σ,σ ′

(−1)σ+σ ′
k∏

i=1

Kn(pσ(i), rσ ′(i)) = 1

k!
det

1�i,j�k
K(pi, rj )

≡ K(k)
n (p1, . . . , pk; r1, . . . , rk). (3.8)

The normalization of the generalized kernel K(k)
n follows directly from the normalization of the

single kernel Kn(p, q) which is n and the repeated application of Dyson’s integration theorem
to a k × k determinant integrated k times. This way we get the binomial coefficient:∫

dq1 · · · dqk K(k)
n (q1, . . . , qk; q1, . . . , qk) = n!

(n − k)!k!
. (3.9)

The same arguments as at the end of the previous proof apply for C = 0.

4. Conclusions

We have shown how to reduce any number of integrations over a determinant of a bilinear
function of non-orthogonal functions to a smaller determinant of a self-contracting kernel
containing only single integrals. This makes the large-n limit feasible in such a general setting
at least in principle, given the single integrals can be evaluated. Due to the fermionic nature of
the Vandermonde determinant other applications than the mentioned Schwinger model should
exist. Our result gives hope that an analogous Pfaffian integration theorem with some variables
unintegrated also exists.

After writing up this paper we learned from P Forrester that the first part of our result was
derived independently by Rains [5] in the context of symmetrized increasing subsequences.
His alternative proof is formulated in terms of the Pfaffian of an antisymmetric matrix kernel.
In contrast, our proof illuminates the close relation to Dyson’s theorem.
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